Principles of earthquake source mechanics

B. V. KOSTROV

Institute of Physics of the Earth, Academy of Sciences, Moscow

SHAMITA DAS

Lamont-Doherty Geological Observatory of Columbia University

CAMBRIDGE UNIVERSITY PRESS

Cambridge

New York New Rochelle Melbourne Sydney

CONTENTS

	List of symbols	page vii
	Preface	xv
	Introduction	1
Part I	Continuum and fracture	15
1	Basic mechanical principles of the theory of tectonic earthquake sources	17
1.1	Definition of the tectonic earthquake source; theory	
	of elastic rebound	17
1.2	Kinematics of a continuous medium	28
1.3	Dynamics of a continuous medium	42
2	General concepts of fracture mechanics	53
2.1	Introduction	53
2.2	Energy conservation law	62
2.3	Conditions of dynamic fracture onset and arrest	68
2.4	Conclusions to Part I	81
Part II	Inversion for source parameters	87
3	The inverse problem of earthquake source theory	89
3.1	Green-Volterra formula; Green's tensor in linear	
	elastodynamics	90
3.2	General solution to the kinematic dislocation problem;	
	formulation of the inverse problem	93
3.3	Formulation of the inverse problem for far-field body waves	101
3.4	First arrivals of body waves	112

vi Contents

	3.5	Spectral representation of the inverse problem	123
	3.6	Solution to the basic equation; uniqueness theorem	128
	3.7	Instability of the solution	132
	3.8	Smoothed solution to the inverse problem	138
	4	Seismic moment tensor	142
	4.1	Long-wave approximation	142
	4.2	Determination of the seismic moment tensor from observations	146
	4.3	Seismic moment versus stress estimates at the source	148
	4.4	Seismic energy	150
	4.5	Seismic moment tensor and seismic flow of rocks	158
	4.6	Asperity model	164
Da		Sansife contempts course module	1.00
Pa	rt III	Specific earthquake source models	169
	5	The boundary-integral equation method	174
	5.1	Representation relations	174
	5.2	Discrete representations	178
	5.3	The circular self-similar shear crack	182
	5.4	The finite circular shear crack	188
	5.5	A crack with dry friction	191
	5.6	Spontaneous cracks	195
	5.7	General formulation of the boundary conditions on the fault	223
	6	Far-field radiation from numerical source models	225
	6.1	The initial pulse shape	225
	6.2	Far-field radiation from simple faulting models	227
	6.3	The heterogeneous faulting processes	234
		Appendixes	259
	1	Kernels of the integral representations (5.1.9) and (5.1.3)	259
	2	Approximation and stability properties of the representation	
		relations	268
		References	272
		Additional reading	281
		Index	283